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Abstract

The hyperplasticity and continuous hyperplasticity formulations enable complete derivation of thermodynamically

admissible constitutive models. In this paper these two formulations are unified. This facilitates derivation of new forms

of thermodynamical models that exhibit both global continuous behavior and the phenomenon of abrupt stiffness

change within a single package. The concept allows for development of a technique for modeling of different kinematic

stiffness regions bounded within an outer isotropic hardening yield surface, as observed in clays. This feature is em-

ployed for derivation of a new continuous hyperplastic critical state model. In general, this paper demonstrates how the

specification of two potential functionals allows derivation of constitutive models that satisfy the Laws of Thermo-

dynamics and at the same time account for many important aspects of soil behavior.
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1. Introduction

Many plasticity theories have been proposed over the years. While some theories are �flexible enough� to
cause violation of either the First and/or Second Law of Thermodynamics, some rigorous thermodynamic

frameworks have also been developed over the years. The latter includes the rationalized thermodynamics

(Coleman�s classical paper, 1964; Truesdell�s standard exposition, 1969) and the generalized thermo-

dynamics––or thermodynamics of internal variables (Lubliner, 1972; Halphen and Nguyen Quoc Son,

1975, Ziegler, 1977, 1983; Maugin, 1992). Though the rationalized thermodynamics achieves considerable

generality through the use of functionals, it has the disadvantage of being difficult to use in simple models

that show abrupt events, such as yielding that occurs in conventional plasticity models. In contrast, whilst
generalized thermodynamics has been a very successful in simulating such simple models, many materials
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are known to exhibit a smoother behavior, that could not be simulated by discrete representation (Coleman

and Gurtin, 1967; Kestin and Rice, 1970; Lubliner, 1972). According to Coleman and Gurtin, theories that

rest on a finite number of internal state variables always linearize the spectra of behavior. Generalized

thermodynamics, in that sense, over-simplifies the response by condensing the past history into the present
of a finite number of internal variables; they being the amounts of energy associated with the various modes

of molecular motion.

Puzrin and Houlsby (2001a,b) suggested an alternative to bypass these drawbacks of either generalized

thermodynamics or rationalized thermodynamics, in the form of continuous hyperplasticity. The roots of

this work can be related to the work of Ziegler (1977, 1983), Houlsby (1981), Collins and Houlsby (1997)

and Houlsby and Puzrin (2000) who have also termed generalized thermodynamics models within this

category as being hyperplastic; in analogues to hyperelasticity, such models are completely defined by

thermodynamic potential functions. The basis for the continuous hyperplastic approach is still the gener-
alized thermodynamics. However, in continuous hyperplasticity we make use of functionals, instead of

functions, while the formulation preserves the concept of internal functions (instead of variables). While in

the rationalized thermodynamics the functionals appear as functions of the past strain or temperature

history, in continuous hyperplasticity the potentials are functions of the internal function.

As described by Puzrin and Houlsby, continuous hyperplasticity enables simulation of the smooth non-

linear behavior exhibited by many materials, which could not be simulated by the discrete representation of

hyperplasticity. There are some abrupt phenomena, however, that are better approached by discrete

yielding rather than continuous yielding. For example, the isotropic hardening behavior of soils is seen as
dependent upon a single yielding event (see Fig. 1 for both sand and clay); yet, before this yielding occurs

the material introduces non-linearity, which is even implied by the ‘‘curvature (?)’’ question in Fig. 1a and

which is very pronounced in the unloading curve in Fig. 1b.

The objective of this paper is to formulate a new thermodynamically admissible constitutive model

which will hopefully compete with other existing non-thermomechanical constitutive models that are found

in the literature. 2 In the course of providing such a model we develop some new concepts and constitutive

modeling guidelines. Unifying the formulations of hyperplasticity and continuous hyperplasticity may

suggest a single package, where both continuous behavior prior to the single instantaneous yielding and the
monotonic behavior beyond this yielding are taken into account. The formulation we present in Section 2 is

constructed particularly to capture this soil aspect, but could most probably be modified to enable other

types of abrupt effects in different continuous materials.

The unified thermomechanical formulation requires a careful treatment of the incremental response and

its drift corrected form as we do in Section 3. As mentioned earlier, prior to the instantaneous yielding of

the soil, its behavior is non-linear. As suggested by Jardine (1992) among others, in clays this non-linearity

should be described by a scheme of surfaces, bounding different kinematic regions. In Section 4 we develop

a technique for modeling the kinematic stiffness-regions within the unified thermomechanical framework. A
new continuous hyperplastic critical state (CHCS) model, which utilizes the above developments, is then

derived from definition of only two potential functionals in Sections 5–7. Although the model is based on

the unified thermomechanical formulation that allows modelling both continuous and abrupt phenomena,

we term it ‘‘continuous’’ to emphasize its ability to ‘‘remember’’ continuously the history of loading events.

As mentioned above, the model can also cope with the various distinct regimes in the history of the soil

deformation, but the memory of the loading within the different regimes is always continuous.

Another important feature of the new model is that it adopts a new class of energy potential functions

that allow for the well-known power dependency of elastic moduli on pressure to be generated without
violation of the law of energy conservation. In addition, as described in Section 7, the model introduces a
2 This statement is examined in a second part paper that is published separately (Einav and Puzrin, 2003b).



Fig. 1. Critical-state of: (a) Leighton Buzzard sand (Been et al., 1991) and (b) Vallerica clay (Borja et al., 1997).
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special form of yield functions that account for the effects of the third stress invariant. In general, this paper

will demonstrate how the specification of two potential functionals allows derivation of constitutive models

that satisfy the Laws of Thermodynamics and at the same time account for many important aspects of soil

behavior.

This paper also presents, in Section 8, a short parametric study that demonstrates to which parameters
the model response is more sensitive. For more elaborate evaluation, on both laboratory and full geo-

technical problem scales, readers are referred to the companion paper, which will be published separately.
2. A unified thermodynamical framework

The First Law of Thermodynamics states that there is an internal energy per unit volume u, which may

be expressed in local rate form as
r : _ee �r � h ¼ _uu ð1Þ
where r is the effective Cauchy stress tensor; _ee is the small strain tensor; h is the heat flow-vector; the first

term is the mechanical work input; the second term is the rate of heat supply to the material element from

its surroundings; we use the Nabla operator to indicate the spatial differential and the symbol ‘‘:’’ denotes

the inner product of two second-order tensors.

The Second Law of Thermodynamics can be expressed by the entropy scalar property S such that
_SSP �r � ðh=hÞ, where h is the local absolute temperature and �r � ðh=hÞ is the entropy flux, i.e., the

reversible part of entropy change. The Law can be restated as
h _SS þr � h|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
d

� h � rh
h

P 0
The first two terms represent the mechanical dissipation d, the third term � h�rh
h is called the thermal

dissipation and is always non-negative by virtue of the fact that the heat flux is always in the direction of the
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negative thermal gradient. The thermal dissipation decreases by comparison with the mechanical dissipa-

tion for slow processes, so it is argued that the mechanical dissipation must itself be non-negative
h _SS þr � h � d P 0 ð2Þ
This is a slightly more stringent condition, but it is widely accepted and referred to as Plank�s inequality

(see Truesdell, 1969). From (1) and (2) it follows that:
_uu ¼ r : _ee þ h _SS � d ð3Þ
In the formulation of hyperplasticity (Collins and Houlsby, 1997; Houlsby and Puzrin, 2000) the internal

energy, being a function of state, is assumed to depend on strain, an internal variable a and entropy, thus

u ¼ uðe; S; aÞ. In the formulation of continuous hyperplasticity (Puzrin and Houlsby, 2001a,b) the internal
variable is replaced by an internal function âa � âaðgÞ, g 2 D, where g is its internal coordinate in the domain

D, such that u ¼ u½e; S; âa�, while the square brackets [ ] denote that internal energy is now a functional of

state, rather than a function of state.

For the purpose of this work, let us assume that the internal energy is a functional of both the internal

variable and the internal function, such that
_uu ¼ _uu½e; S; a�; âa� ¼ ou
oe

: _ee þ ou
oS

_SS � �vv� 
 _aa� �
Z
D
ð�̂vv�vv 
 _̂aâaaÞdg ð4Þ
where we denote �vv� ¼ � ou
oa� and �̂vv�vv ¼ � ou

oâa
as the hyperplastic and continuous hyperplastic generalized stresses;

the upper case asterisk sign was added to the internal variable associated with the hyperplastic component,

in order to differentiate it more clearly from the internal function âaðgÞ. Since internal variable (or function)

can be a scalar, tensor, or a collection of scalars and tensors of various orders, we introduce the use of the

bold dot ‘‘
’’ to designate a general inner product of two general variables. Once the structure of a� and âa is

known, the operator ‘‘
’’ may be interpreted accordingly. For example, if a� is a vector-like variable, ou
oa� 
 _aa�

corresponds to the vector product ou
oa� � _aa�, if it is a tensor-like variable the operator corresponds to ou

oa� : _aa
�.

Assuming that the dissipation is a function of the thermodynamic state of the material as well as of the

rate of change of internal variable (or function), and considering only isothermal mechanisms where iso-

tropic hardening is due only to the single hyperplastic component, we restrict
de ¼ de
� ðw; a�; _aa�Þ þ

Z
D
d̂de½w; a�; _̂aâaaðgÞ; g�P 0 ð5Þ
where we introduce
w ¼ e for ðuÞ and ðf Þ formulations
r for ðhÞ and ðgÞ formulations

�

In each combination the superscript e over d denotes a type of energy potential with which d is asso-

ciated, while u, f , h, and g correspond to internal energy, Helmholtz free energy, enthalpy and Gibbs free

energy potentials. Although, at this stage we have only defined the internal energy u, the use of the al-

ternative forms will be clarified below. Note also that de
�
and d̂de corresponds to the hyperplastic and

continuous hyperplastic components.

Euler�s theorem for rate independent materials gives
de ¼ ode

o _aa� 
 _aa� þ
Z
D

od̂de

o _̂aâaa

 _̂aâaadg ¼ v� 
 _aa� þ

Z
D

v̂v 
 _̂aâaadgP 0 ð6Þ
where v� ¼ ode

o _aa� and v̂v ¼ od̂de

o _̂aâaa
denote the dissipative generalized stresses of the hyperplastic and continuous

hyperplastic components in that order. Adding Eqs. (3), (4) and (6) it could be easily verified that
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r

�
� ou

oe

	
: _ee þ h

�
� ou
oS

	
_SS þ ð�vv� � v�Þ 
 _aa� þ

Z
D
ð�̂vv�vv � v̂vÞ 
 _̂aâaadg ¼ 0
where by assuming Ziegler�s normality condition in the form �vv� ¼ v� and �̂vv�vvðgÞ ¼ v̂vðgÞ, 8g 2 D, the Coleman

relations
r ¼ ou
oe

; h ¼ ou
oS

ð7Þ
are validated since _ee and _SS are state variables rates, that can be specified arbitrarily in a given thermody-

namic state (Einav (2002) for discussion).

2.1. Energy potentials

The first equation in (7) suggests the existence of the enthalpy energy potential through Legendre

transformation in the form: h½r; a�; âa; S� ¼ u½e; a�; âa; S� � r : e; the second equation in (7) suggests the ex-

istence of the Helmholtz free energy potential through Legendre transformation in the form:

f ½e; a�; âa; h� ¼ u½e; a�; âa; S� � Sh; this relation implies r ¼ ou=oe ¼ of =oe, which in return suggests another

energy potential, this time the Gibbs free energy through Legendre transformation in the form:

g½r; a�; âa; h� ¼ f ½e; a�; âa; h� � r : e; this relation implies e ¼ �og=or. In all of these transformations the in-

ternal variable/function was passive, thus the generalized stresses may be defined alternatively by
�̂vv�vv ¼ � ou
oâa

¼ � oh
oâa

¼ � of
oâa

¼ � og
oâa

8g 2 D

�vv� ¼ � ou
oa� ¼ � oh

oa� ¼ � of
oa� ¼ � og

oa�

9>=
>; ð8Þ
In the particular case where the Gibbs free energy potential takes the isothermal form of
g½r; a�; âa� ¼ g1ðrÞ � r :

Z
D

âadg

�
þ a�

	
þ
Z
D
ĝg2ðâa; gÞdg ð9Þ
we restrict our study to the temperature independent processes where the strain can be decomposed into

elastic and plastic components by
e ¼ � og
or

¼ � og1ðrÞ
or|fflfflfflfflffl{zfflfflfflfflffl}
ee

þ a� þ
Z
D

âadg|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ep

ð10Þ
where coupling between internal variables may occur.
Noting Eq. (8), for this special case, the generalized stress function becomes:
�̂vv�vv ¼ r � q̂qðâaÞ; �̂vv�vv� ¼ r ð11Þ

where q̂q � oĝg2=oâa is the ‘‘back stress’’ associated with the internal function, and we permit no kinematic

translation of the hyperplastic component of the model since q� � og�2=oa
� ¼ 0.

2.2. Yield surfaces and dissipation

The dissipation in Eq. (6) suggests that the first component is related to a single hyperplastic surface

through the degenerate special case of the Legendre transformation
k�ye
� ¼ v� 
 _aa� � de

� ¼ 0 ð12Þ

where k� is the consistency parameter satisfying the Kuhn–Tucker complementary conditions in the form

fk� P 0; ye
�
6 0; k�ye

� ¼ 0g, and ye
�
is the yield function in the form
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ye
� ¼ ye

� ðw; a�; v�Þ6 0 ð13Þ

The functional component in Eq. (6) is converted into a field of yield surfaces, through the relation
k̂kŷye ¼ v̂v 
 _̂aâaa � d̂de ¼ 0 8g 2 D ð14Þ

where k̂k � k̂kðgÞ satisfies the Kuhn–Tucker conditions in the form fk̂k P 0; ŷye 6 0; k̂kŷye ¼ 0g, and ŷye is the

corresponding continuous field of yield functions in the form:
ŷye ¼ ŷyeðw; a�; v̂v; gÞ6 0 8g 2 D ð15Þ

where ŷyeðw; a�; v̂v; gÞ ¼ 0 is the g-coordinate yield surface.

The dependence of both ye
�
and ŷye on the same internal variable a�, suggests that all surfaces may ex-

perience isotropic hardening, which depends upon a single instantaneous yielding event of the hyperplastic

yield function in (13); hence, we name the surface ye
� ¼ 0 as the isotropic hardening yield surface.
3. Incremental response

For simplicity, let us derive the incremental response for g-formulation only. From the time differen-

tiation of the generalized stresses (11) it follows that
_̂�vv�vv̂�vv�vv ¼ _rr � o2ĝg2

oâaoâa
: _̂aâaa 8g 2 D ð16Þ

_�vv�vv� ¼ _rr ð17Þ

The consistency condition for the isotropic hardening/softening yield surface is obtained by time dif-

ferentiation of (13) for the limiting equality case
_yyg
� ¼ _yyg

� ðr; a�; v�Þ ¼ oyg
�

or
: _rr þ oyg

�

oa� : _aa� þ oyg
�

ov� : _vv� ¼ 0 ð18Þ
and that of the field of yield surfaces is given by differentiating equation (15) for the limiting equality case
_̂yŷyyg ¼ _̂yŷyygðr; a�; v̂v; gÞ ¼ oŷy g

or
: _rr þ oŷy g

oa� : _aa
� þ oŷy g

ov̂v
: _̂vv̂vv ¼ 0; 8g 2 D ð19Þ
From the properties of the Legendre transformation in (12) it follows that the flow rule for the isotropic

surface is
_aa� ¼ k� oy
e�

ov� ð20Þ
where the flow rule for the field of yield surfaces is given from the properties of (14) by
_̂aâaa ¼ k̂k
oŷye

ov̂v
8g 2 D ð21Þ
The combination of Eqs. (17), (18) and (20) provides a solution for the non-negative plasticity multiplier of

the hyperplastic isotropic hardening/softening yield surface
k� ¼
� oyg

�

ov� þ oyg
�

or

� 	
: _rr

oyg
�

ov� :
oyg

�

oa�

ð22Þ
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The solution for the non-negative plasticity multiplier function of the field of continuous hyperplastic yield

surfaces is a function of the solution of k� in (22), and is given by
k̂k ¼

oŷy g

ov̂v
þ oŷy g

or

� 	
: _rr þ k� oy

g�

ov� :
oŷy g

oa�

oŷy g

ov̂v
:
o2ĝg2

oâaoâa
:
oŷy g

ov̂v

8g 2 D ð23Þ
which was obtained by rearrangement of Eqs. (16) and (19)–(21). This indicates the coupled dependency of

the kinematic yield surfaces� plastic flow on the plastic flow of the isotropic hardening hyperplastic yield

surface. Finally, the solution for the strain time rates is given by a derivation of (10)
_ee ¼ � o2g1

oror
: _rr þ

Z
D

_̂aâaadg þ _aa� ð24Þ
If we substitute the generalized stresses (11) into the generalized yield surfaces (13) and (15) the yield

surfaces in true stress space are extracted
y g
�

T ðr; a�Þ ¼ y g
� ðr; a�; v� ! rÞ

ŷy gTðr; a�; âa; gÞ ¼ ŷy gðr; a�; v̂v ! r � q̂qðâaÞ; gÞ 8g 2 D

�
ð25Þ
where the subscript �T� is added to identify the true stress space yield surfaces from those of the generalized

space.

Remark. If the g ¼ g
^

coordinate yield surface in D initially coincides with the isotropic hardening/softening

surface in both true and generalized spaces, their first yielding occurs simultaneously, while âaðg^Þ ¼ 0. Since
at that moment yg

� ðr; a�; v�Þ ¼ ŷy gðr; a�; v̂v; g
^Þ ¼ 0 as well, we observe the following equalities:
oŷy g=orj
âaðg^Þ¼0 ¼ oyg

�
=or

oŷy g=oa�j
âaðg^Þ¼0 ¼ oyg

�
=oa�

oŷy g=ov�j
âaðg^Þ¼0 ¼ oyg

�
=ov�

9>=
>; ð26Þ
Implementing Eq. (26) with Eqs. (22) and (23) suggests that for this moment of yielding k̂kðg^Þ ¼ 0.

Therefore, the first increment of the associated internal variable is _̂aâaa ¼ k̂kðg^Þ oŷy g

ov̂v
ðg^Þ ¼ 0. As a result, if the

dependencies of both surfaces on a� are the same, Eq. (26) still hold and Eqs. (22) and (23) still give

k̂kðg^Þ ¼ 0. The above reasoning continues inductively, so that we always get âaðg^Þ � 0. The last observation

will be of use while we formulate specific models within the formulation.
3.1. Drift corrected incremental response

The special incremental response we have presented also requires careful attention when converting it to

the drift corrected version for a numerical algorithmised in a computer code. For this purpose we convert

the above derivation into the discrete multi-surface hyperplasticity (Puzrin and Houlsby, 2001b) formu-

lation as proposed by Einav et al. (2003). From a computational standpoint, continuous hyperplasticity is

similar to the multi-surface hyperplasticity formulation. However, the characterization of the distribution

function HðgÞ is identified using the framework of continuous hyperplasticity and these formulations differ

from each other conceptually. Note that the single hyperplastic component need not be dealt with in any
exceptional manner. For that reason, the Gibbs free energy potential functional (Eq. (9)) is replaced by the

function
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gðr; a�;AÞ ¼ g1ðrÞ � r :
XN
n¼1

an þ a�

 !
þ
XN
n¼1

g2;nðanÞ ð27Þ
where A ¼ Aða1; . . . ; aN Þ is a set of internal variables, replacing the internal function âa � âaðgÞ; g 2 f0; 1g.
While Eq. (17) still holds, Eq. (16) is replaced by
_�vv�vvn ¼ _rr � o2g2;n

oanoan
: _aan 8n 2 f1; . . . ;Ng ð28Þ
The consistency condition for the hyperplastic isotropic hardening surface is given by
_yyg
� ¼ _yyg

� ðr; a�; v�Þ ¼ oyg
�

or
: _rr þ oyg

�

oa� : _aa� þ oyg
�

ov� : _vv� ¼ �d� ð29Þ
where d� ¼ yg
� ðr; a�; v�Þ is added to (18) to correct the yield surface drift for a single hyperplastic surface.

The continuous field of yield surfaces in Eq. (15) could be represented by a discrete field of surfaces,
given by
ygn ¼ ygnðr; a�; vn; n=NÞ 8n 2 f1; 2; . . . ;Ng ð30Þ
where a linear distribution n=N (see Einav et al., 2003) replaces g as the coordinate indicating the relative

size of the yield surface compared to the largest yield surface at the nth position. The consistency condition
of the nth surface is
_yygn ¼ _yygn ðr; a�; vn; n=NÞ ¼ oygn
or

: _rr ¼ oygn
oa� : _aa

� þ oygn
ovn

: _vvn ¼ �dn ð31Þ
where dn ¼ ygnðr; a�; vn; n=NÞ is supplemented to correct drifting of the nth yield surface.
Substitution of the flow rule for the isotropic hardening surface _aa� ¼ k� oye

�

ov� and of Eq. (17) into Eq. (29)

leads to a solution of the drift corrected non-negative multiplier of the isotropic surface
k� ¼
� oyg

�

or
þ oyg

�

ov�

� 	
: _rr þ d�

oyg
�

ov� :
oyg

�

oa�

ð32Þ
The solution for the nth non-negative multiplier of the nth kinematic yield surface is derived by combining
the nth flow rule _aan ¼ kn

oygn
ovn

, the isotropic-hardening-surface flow-rule _aa� ¼ k� oye
�

ov� , the nth equation in (28),

and the nth consistency condition (31):
kn ¼

oygn
ovn

þ oygn
or

� 	
: _rr þ k� oy

g
n

oa� :
oyg

�

ov� þ dn

oygn
ovn

:
o2g2;n

oanoan
:
oygn
ovn

8n 2 f1; 2 . . . ;Ng ð33Þ
Finally, the multi-surface format of Eq. (24) is given by
_ee ¼ � o2g1

oror
: _rr þ

XN
n¼1

_aan þ _aa� ð34Þ
which together with the flow rules, Eqs. (32), (33), (17) and (28) constitute the drift corrected incremental
response for stress controlled processes. Indeed, combining this with a general loading conditions equation

in the form C : _rr þD : _ee ¼ S suggests that
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_rr ¼ C�D :
o2g1

oror
�
XN
i¼1

Li �
oygi
ovi

� L� � oyg
�

ov�

 !" #�1

: Sþ
XN
i¼1

di
Ai

oygi
ovi

þ d�

A�
oyg

�

ov�

" #
_ee ¼ D�1 : ðS� C : _rrÞ

9>=
>; ð35Þ
where
An ¼
oygn
ovn

:
o2g2;n

oanoan
:
oygn
ovn

; A� ¼ oyg
�

ov� :
oyg

�

oa�

Li ¼
oyg

or

�
þ oygn

ovn

	�
An; L� ¼ � oyg

or

�
þ oygn

ovn

	�
A�
After solving Eqs. (35)1, (35)2 and (32); estimating the nth non-negative multipliers in (33), and updating the
internal variables using all the flow rules and the generalized stresses from Eqs. (17) and (28), we obtain a

drift corrected incremental response for the modified framework.
4. A technique for modeling kinematic stiffness-regions

4.1. Experimental observations

It is widely accepted that in most types of continuous loading in soils the stiffness at small strains reduces

rapidly, as indicated for example by Hardin and Drnevich (1972), Jardine (1992) and Smith et al. (1992). In

order to capture this rapid reduction of stiffness, it is common to assume that the stress domain up to the

large-scale yielding is divided into two or three sub-domains with different characterizations. Frequently, it

is assumed that there exists a very small kinematic linear elastic nucleus in stress space, which is bounded by
a yield surface referred to as Y1. However, as pointed out by Jardine (1992), it is difficult to locate this

surface or even to prove its existence for most soils, maybe except for strongly cemented soils. The second

domain (alternatively the first, if Y1 is ignored) is bounded by a second yield surface Y2, which marks the

limit where reduction of stiffnesses becomes moderate, and is called the small strain region (SSR). The

region between Y2 and the large-scale yielding surface Y3 is characterized as a domain of transition, where

the plastic components of straining become ever larger as the stress point approaches the Y3 surface. The

soil behavior inside Y3 is hysteretic. As already mentioned, at a certain instant (which in this scheme is

described by encountering Y3) there is an abrupt yielding and the material undergoes larger plastic
straining; frequently this is what soil models of conventional elastoplasticity refer to as yielding. The zone

boundaries Y1, Y2 and Y3 are mobile and may change their shape and size as they follow the current stress

point. A key feature of this experimental scheme is that up to Y3, the soil behavior could be characterized

by kinematic translation of yield surfaces such that their location enables the material to �remember� events
in recent history.

In order to clarify how the kinematic hardening scheme works we will later provide an illustration for the

particular CHCS model (see Section 6.4). But before that, we are going to establish the technique for

utilizing the kinematic stiffness region scheme within the modified framework given in Section 3.

4.2. The new technique

Before presenting the CHCS model, it is important that we establish a technique for applying the ki-

nematic stiffness region scheme. This is achieved by determining a one-dimensional model. As described by

Puzrin and Houlsby (2001b) the continuous Iwan–Mroz model could be completely specified by two

functionals; for example the Gibbs potential functional and the dissipation potential functional or alter-
natively the field of yield functions
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g½r; âa� ¼ � r2

2E0
� rep þ E0

2

R 1

0
HðgÞâaðgÞ2 dg and

dgð _̂aâaaÞ ¼
R 1

0
kgj _̂aâaaðgÞjdgP 0 or

ŷygðv̂v; gÞ ¼ v̂vðgÞ2 � k2g2
6 0 8g 2 f0; 1g

9>>=
>>; ð36Þ
where ep ¼
R 1

0
âaðgÞdg and the distribution function HðgÞ is uniquely related to the second derivative of the

initial back-bone curve eðrÞ, through

o2e
or2

¼ 1

kE0Hðr=kÞ ð37Þ
For example, it has been shown that the hyperbolic stress–strain curve e ¼ k
E0

r
k�r is defined by utilizing

HðgÞ ¼ ð1� gÞ3=2.
Let us modify the Gibbs potential (36)1, so that
g½r; âa; a�� ¼ � r2

2E0

� rep þ
E0

2

Z x

0

H0

g
x

� �
âa2 dg þ R1E0

2

Z 1

x
H1

g � x
1� x

� �
âa2 dg ð38Þ
where R1 and x are parameters to be specified later and the form of (38) conforms to the general equation

(9) in the unified framework, while ep ¼
R 1

0
âaðgÞdg þ a�.

Next, let us update the dissipation in (36)2 by
dg½a�; _̂aâaa; _aa�� ¼ kPða�Þ
Z 1

0

½gY1 þ ð1� gY1Þg�j _̂aâaaðgÞjdg þ j _aa�jdg

� �
P 0 ð39Þ
where gY1 represents the relative size of the elastic nucleus compared to Y3 (sized by the parameter k).
Note that the form of dissipation in (39) agrees with the general one in (5), whilst Pða�Þ is a positively

defined hardening/softening function (in order that (39) will always be satisfied) that conforms to the

boundary condition Pða� ¼ 0Þ � 1. This function leads to hardening when a� increases and softening when

its value decreases. It can be shown that the new dissipation alters the field of yield functions through

Legendre transformation (14)
ŷygðv̂v; a�; gÞ ¼ v̂vðgÞ2 � k2½gY1 þ ð1� gY1Þg�
2Pða�Þ2 6 0 8g 2 f0; 1g ð40Þ
and through Legendre transformation (12) adds an additional isotropic hardening/softening yield function
yg
� ðv�; a�Þ ¼ ðv�Þ2 � k2Pða�Þ2 6 0 ð41Þ
The stress space expressions for these functions are found by implementing Eqs. (11) and (38)
ŷygTðr; a�; âa; gÞ ¼ ½r � q̂qðâaÞ�2 � k2½gY1 þ ð1� gY1Þg�
2Pða�Þ2 6 0 8g 2 f0; 1g

yg
�

T ðr; a�Þ ¼ r2 � k2Pða�Þ2 6 0

)
ð42Þ
where
q̂qðâaÞ ¼ E0H0
g
x

� �
âa for 0 < g6x

E0R1H1
g�x
1�x

� �
âa for x6 g6 1

�

We see, then, that q̂qðâa ¼ 0Þ � 0 during initial conditions which implies that ŷygTðr; a�; âa; 1Þ ¼ yg

�

T ðr; a�Þ. Since
from Eqs. (40) and (41), we see that ŷygðv̂vð1Þ; a�; 1Þ and yg

� ðv�; a�Þ have also the same coordinates, then as we

mentioned in Section 3, âað1Þ � 0, which means that continuity exists between (42)1 and (42)2; thus we

always have
ŷygTðr; a�; âa; 1Þ � r2 � k2Pða�Þ2 6 0 ð43Þ
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By examining the new setting, we identify a subdivision of the stress domain into four different stiffness

zones.

Zone I. The size of the first zone (the elastic stress-space nucleus, bounded inside Y1) is configured by

gY1kPða�Þ (considering Eq. (42)1 for g ¼ 0). If the outer yield surface has not experienced any yielding, i.e.
a� ¼ 0, the size of the elastic nucleus is given by gY1k. This should be compared with the previous model (36)

in which the stress-space nucleus of the elastic domain always shrinks to a point (in that case at r ¼ 0).

Zone II. The second zone governs the model�s behavior whenever the largest active yield surface, such

that ŷygðv̂vð�ggÞ; a�; �ggÞ ¼ 0, corresponds to 0 < �gg6x. In general, the size of Y2 is given from (42)1 by

gY2kPða�Þ ¼ ½gY1 þ ð1� gY1Þx�kPða�Þ, where x is a parameter that defines the size of the Y2 yield surface,

which bounds the domain. Its value is calculated by
x ¼ gY2 � gY1

1� gY1

ð44Þ
where gY2 represents the relative size of Y2 compared to Y3. If, for example, we ignore the existence of the
elastic nucleus, then gY1 ¼ 0 and x ¼ gY2, such that x also represents the relative size of Y2 compared to

Y3.

The stiffness variation within this region is predetermined by the distribution function H0ðg=xÞ. This

function should allow rapid reduction of the stiffness and ensure that at the end of the region, i.e. when
�gg ¼ x, H0ð1Þ ¼ R1. We find, then, that R1 is a parameter defining the amount of stiffness reduction in the

transition from Y1 to Y2. The calibration of H0ðg=xÞ is achieved by utilizing Eq. (37) as for the previous

continuous Iwan–Mroz model, while the term g=x maps the coordinate from zero to one, and replaces the

previous dependency on g.
Zone III. The third zone controls the behavior whenever the largest active yield surface, such that

ŷygðv̂vð�ggÞ; a�; �ggÞ ¼ 0, corresponds to x6 �gg < 1. As before, for the calibration of the distribution function

H1ðg�x
1�xÞ we use Eq. (37), though this time g�x

1�x maps the coordinate from zero to one. The initial stiffness of

this zone is the same as the final stiffness of zone II, since H0ð1ÞE0 ¼ R1E0.

Zone IV. This zone is encountered whenever the single hyperplastic isotropic hardening yield function is

reached, i.e. whenever yg
�

T ðv�; a�Þ ¼ 0. As mentioned before, the last surface in the continuous region, i.e.

ŷygTðr; a�; âa; 1Þ, yields simultaneously, but contributes no plastic flow (according to Section 3), since it co-

incides with the region�s boundary Y3. The stiffness varies according to the hardening function Pða�Þ found
in (42)2 and (43), since r ¼ kPða�Þ. The tangential stiffness in this region is given by or

oe ¼ or
oa� � oa

�

oe ¼ kP0ða�Þ.
Since the only restriction on the value of parameter R2 ¼ H1ð1Þ, representing the stiffness reduction within

the third zone, is to be greater than zero, there is principally an abrupt change in behavior at the first instant

that Y3 yields, which supports the observation in Fig. 1. It can be seen that in Y3 two surfaces exist: one is

an ‘‘active’’ surface yg
�

T and the other is a ‘‘passive’’ surface ŷygT for g ¼ 1; this carries the memory for the

abrupt change in Y3.

The presented approach provides a general idea of how the scheme of the stiffness regions can be in-

corporated within the framework described in Section 2. However, at this stage, the model has been one-
dimensional only, and the functions Pða�Þ, H0ðg=xÞ and H1ðg�x

1�xÞ have yet to be determined.

4.3. Distribution functions

It has been shown elsewhere (for example Jardine et al., 1986; Burland, 1989) that in many geotechnical

soil–structure interaction problems stiffness reduction within the SSR is very important. This is why when

defining the distribution functions we focus mainly on the behavior within the SSR, without neglecting the

accuracy of prediction at the larger strains.

As we indicated before, the first distribution function H0ðgÞ should satisfy the following boundary
condition H0ð1Þ ¼ R1. However, the function should also describe the substantial reduction in stiffness
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inside the SSR. A possible alternative is given by the normalized Ramberg–Osgood power function (see

Ramberg and Osgood, 1943)
x ¼ y þ ayr for 06 x6 xL and 06 y6 1 ð45Þ
where y ¼ r=k; x ¼ E0e=k; xL ¼ E0eL=k and a and r are parameters chosen to ensure that the conditions (a)

xðy ¼ 0Þ � 0; (b) dx=dyðy ¼ 0Þ � 1; (c) xðy ¼ 1Þ � xL; (d) dx=dy ðy ¼ 1Þ � 1=R1; (e) dx=dy > 0 and
d2x=dy2 > 0, are satisfied, so that
a ¼ xL � 1; r ¼ 1� R1

R1a
ð46Þ
As is seen from Eq. (37), in order to define the distribution function H0ðgÞ,the second derivatives o2e=or2 of

(45) are required. Since oe
or ¼ oe

ox
ox
oy

oy
or, x ¼ E0e=k and y ¼ r=k we obtain
o2e
or2

¼ 1

kE0

o2x
oy2

ð47Þ
From combining Eqs. (37), (45) and (47) it follows that H0ðgÞ ¼ g2�r=arðr � 1Þ is a very convenient form.
As already mentioned, this function is only appropriate for the continuous Iwan–Mroz model (Eq. (36)),

and in order to adjust it to the stress–strain behavior in Zone II, we use
H0ðg=xÞ ¼ ðg=xÞ2�r

arðr � 1Þ ð48Þ
Within Zone III, the requirement for prediction accuracy is less strict and, hence, the function can satisfy

fewer geometrical conditions and involve fewer parameters. The stiffness reduction is moderate and can be
described, for example, by a simple normalized hyperbolic function (Kondner, 1963): x ¼ y=ð1� yÞ.
However, unlike this function, it should not allow failure, and a finite stiffness condition should be met. The

following modified hyperbolic function can be:
x ¼ y
1� by

for 06 y6 1 ð49Þ
that satisfies the conditions (a) xðy ¼ 0Þ � 0; (b) dx=dyðy ¼ 0Þ � 1; (c) xðy ¼ 1Þ � xL; (d) dx=dy > 0 and

d2x=dy2 > 0, then
b ¼ xL � 1

xL
ð50Þ
where compared to the Ramberg–Osgood function we drop the restricting condition on dx=dy at y ¼ 1.

From combining Eqs. (37), (49) and (47) it follows that H1ðgÞ ¼ ð1� bgÞ3=2b. In order to adjust it to the
stress–strain behavior in Zone III, we shall use
H1

g � x
1� x

� �
¼ 1� b

g � x
1� x

� �3.
2b ð51Þ
In Fig. 2 we present a comparison between the two normalized functions (in Eqs. (45) and (49)). Fig. 2a

presents their normalized stress–strain curve. Both functions satisfy the initial stiffness (dashed line), final

strain and final stress conditions, though only the Ramberg–Osgood function satisfies the finite stiffness

requirement (another dashed line). This is the reason why the stiffness reduction by the Ramberg–Osgood

function in Fig. 2b is more pronounced, which is of main concern inside the SSR. However, both result in
conceptually ‘‘S-shaped’’ curves of secant shear stiffness against the logarithm of shear strain as observed

for soils, which may justify the use of the modified hyperbolic beyond the SSR.



0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

modified hyperbolic
Ramberg-Osgood
modified hyperbolic
Ramberg-Osgood

modified hyperbolic
Ramberg-Osgood

0.001            0.01                0.1                   1                   10

y

0

0.2

0.4

0.6

0.8

1

y/x

x Log (x)

(a) (b)

Fig. 2. Comparison between the Ramberg–Osgood and modified hyperbolic functions.

I. Einav, A.M. Puzrin / International Journal of Solids and Structures 41 (2004) 199–226 211
5. Definition of CHCS model

As previously indicated, the two energy potential functionals (5) and (9) define a unified continuous

hyperplastic model with an additional isotropic hardening/softening hyperplastic surface. In this section we

extend the technique given in Section 4 for a two dimensional model using the triaxial stress and strain

variables.

5.1. Definition of triaxial variables

Let us denote stresses by ~AA ¼ fr; v̂v; �̂vv�vv; v�; �vv�g, then the stress-like triaxial variables are defined using
~PP ¼ 1

3
~AA : 1; ~QQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
~HH : ~HH

r
; ~HH ¼ ~AA�~PP1 ð52Þ
where ~PP ¼ fp; v̂vp; �̂vv�vvp; v�
p; �vv

�
pg and ~QQ ¼ fq; v̂vq; �̂vv�vvq; v�

q; �vv
�
qg, respectively, denote the vector of mean and devia-

toric stresses. If we also unify strain-like variables by ~BB ¼ fe; âa; a�g, then the strain-like triaxial variables are

given by
~VV ¼ ~BB : 1; ~SS ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
~cc :~cc

r
; ~cc ¼ ~BB� 1

3
~VV 1 ð53Þ
where ~VV ¼ fev; âav; a�
vg and ~SS ¼ fes; âas; a�

sg correspondingly denote the vector of volumetric and shear

strains. In the above, 1 is the second-order identity tensor, where ð1Þij ¼ dij is the Kronecker delta.

5.2. Definition of Gibbs free-energy functional

The first energy potential functional is the Gibbs free energy
gðr; âa; a�Þ ¼ g1ðrÞ þ g2ðâaÞ �
Z 1

0

âavðp
�

� ð1� gY1Þð1� gÞp0Þdg

þ
Z 1

0

âasðq� ð1� gY1Þð1� gÞq0Þdg

�
� pa�

v � qa�
s ð54Þ
where
g1ðrÞ ¼ � p2�m � ð2� mÞp � p1�m
0

�KKð2� mÞð1� mÞp1�m
r

� q2

6�GGp1�n
r pn

þ q0ð2qp0 � nq0pÞ
6�GGp1�n

r p1þn
0

þ ðp � p0Þðq� q0Þ
J0

ð55Þ
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for any m, apart from when m ¼ 1, in which case taking the limit of Eq. (55) gives
g1ðrÞ ¼ �j�p Ln
p
p0

� �
� 1

� 	
� q2

6�GGp1�n
r pn

þ q0ð2q� q0pnÞ
6�GGp1�n

r pn0
þ ðp � p0Þðq� q0Þ

J0
ð56Þ
The first component g1ðrÞ (in either (55) or (56) is the hyperelastic Gibbs potential proposed by Einav and

Puzrin (2003a), except for the last term ðp � p0Þðq� q0Þ=J0. This term is added to account for the inherent

anisotropy of the material, whilst J0 is the inherent anisotropy modulus parameter. While g1ðrÞ describes
the energy potential component that controls the hyperelastic behavior of the model,
g2ðâaÞ ¼
Z x

0

HK
0

g
x

� �K0âa2
v

2

�
þ HG

0

g
x

� � 3G0âa2
s

2

�
dg

þ R1

Z 1

x
HK

1

g � x
1� x

� �K0âa2
v

2

�
þ HG

1

g � x
1� x

� � 3G0âa2
s

2

�
dg ð57Þ
is the component that defines the kinematic hardening nature of the model. Since the amount of stiffness

reduction and the accompanying strain in the deviatoric and volumetric directions are normally different,

we will use two separate distribution functions. Their format is the same, but their parameters are different.

In principle, the use of non-linear elasticity (55) instead of linear elasticity as configured in the one-

dimensional case (see Eq. (36)1), should require certain modification of the stress-strain backbone curve

expression. However, the corresponding calibration of the functions results in unnecessary complications
that will result in expressions which are difficult to extract.

5.3. Definition of dissipation functional

The second potential functional is the dissipation
dgð _̂aâaa; _aa�; a�; gÞ ¼ py0Pða�Þ
2

Z 1

0

½gY1

�
þ ð1� gY1Þg�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_̂aâaa2
v þM2 _̂aâaa2

s

q�
þ _̂aâaav

�
dg þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _aa�

vÞ
2 þM2ð _aa�

s Þ
2

q
þ _aa�

v

	�
P 0

ð58Þ
where M is the slope of the residual strength criterion; py0 is the initial pre-consolidation pressure and
Pða�Þ ¼ expða�
v=k

� � j�Þ ð59Þ

is a positively defined hardening/softening function, satisfying the boundary condition Pða� ¼ 0Þ � 1,

where k� and j� are the slope of the virgin compression line (VCL) and the initial slope of the swelling line

in ðlnðV Þ; lnðpÞÞ space. Note that the parameter j� is not an extra parameter, since for the case m ¼ 1 it is

directly specified by Eq. (56), and indirectly defined through Eq. (55) for any other value of m.
6. Functional interpretation

6.1. The CHCS field of yield surfaces

The dissipative generalized stresses in Eq. (6) are given by
v̂vp ¼
od

o _̂aâaav

¼ py0Pða�Þ
2

½gY1 þ ð1� gY1Þg�
M2 _̂aâaavffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_̂aâaa2
v þM2 _̂aâaa2

s

q þ 1

0
B@

1
CA

8><
>:

9>=
>; ð60Þ
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v̂vq ¼
od

o _̂aâaas

¼ py0Pða�Þ
2

½gY1 þ ð1� gY1Þg�
M2 _̂aâaasffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_̂aâaa2
v þM2 _̂aâaa2

s

q ð61Þ
and
v�
p ¼

od
o _aa�

v

¼ py0Pða�Þ
2

_aa�
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð _aa�
vÞ

2 þM2ð _aa�
s Þ

2
q þ 1

0
B@

1
CA ð62Þ
v�
q ¼

od
o _aa�

s

¼ py0Pða�Þ
2

M2 _aa�
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð _aa�
vÞ

2 þM2ð _aa�
s Þ

2
q ð63Þ
By changing the position of the last terms in (60) to the left-hand side, squaring Eqs. (60) and (61),

adding them together and rearranging the terms, we derive the field of yield functions
ŷyðv̂v; a�; gÞ ¼ v̂vp � ½gY1 þ ð1� gY1Þg�
py0Pða�Þ

2

� 	2

þ
v̂vq
M

� 	2

� py0Pða�Þ
2

½gY1 þ ð1� gY1Þg�
� 	2

6 0

ð64Þ
Then, by repeating this procedure for (62) and (63), we get the outer yield function (Y3)
yg
� ðv�; a�Þ ¼ v�

p

�
� py0Pða�Þ

2

	2

þ
v�
q

M

� 	2

� py0Pða�Þ
2

� 	2

6 0 ð65Þ
where we note that in the generalized stress space, the Y3 yield surface coincides with the largest yield

surface given by Eq. (64), since ŷyðv̂vð1Þ; a�; g ¼ 1Þ ¼ yg
� ðv̂v�; a�Þ.
6.2. The CHCS hyperelastic component

Differentiating the Gibbs free energy (54) by p and q yields the volumetric strains
ev ¼ � og
op

¼ p1�m � p1�m
0

�KKð1� mÞp1�m
r

� nq2

6�GGp1�n
r p1þn þ

nq2
0

6�GGp1�n
r p1þn

0

� q� q0

J0
þ
Z 1

0

âav dg þ a�
v ð66Þ
apart from when m ¼ 1, in which case
ev ¼ � og
op

¼ j�Ln
p
p0

� �
� nq2

6�GGp1�n
r p1þn þ

nq2
0

6�GGp1�n
r p1þn

0

� q� q0

J0
þ
Z 1

0

âav dg þ a�
v ð67Þ
and shear strain
es ¼ � og
oq

¼ q
3�GGp1�n

r pn
� q0

3�GGp1�n
r pn0

� p � p0
J0

þ
Z 1

0

âas dg þ a�
s ð68Þ
where ð
R 1

0
âav dg þ a�

vÞ and ð
R 1

0
âas dg þ a�

s Þ are identified as the volumetric and shear plastic strains. Both of

these expressions are consistent in giving zero elastic strains for initial conditions (p ¼ p0 and q ¼ q0).

Differentiating the volumetric and shear strains in Eqs. (66) and (68) with respect to p and q produces the
hyperelastic compliance matrix
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C ¼

�o2g1

op2

�o2g1

opoq

�o2g1

oqop
�o2g1

oq2

2
6664

3
7775 ¼

1
�KKprðp=prÞm

þ �nnX2

3�GGprðp=prÞn
� nX

3�GGprðp=prÞn
� 1

J0

� nX
3�GGprðp=prÞn

� 1

J0

1

3�GGprðp=prÞn

2
6664

3
7775 ð69Þ
where X ¼ q=p is the stress ratio, and �nn ¼ nðnþ 1Þ=2. Differentiating (67) and (68) gives
C ¼

j�

p
þ �nnX2

3�GGprðp=prÞn
� nX

3�GGprðp=prÞn
� 1

J0

� nX
3�GGprðp=prÞn

� 1

J0

1

3�GGprðp=prÞn

2
6664

3
7775
is consistent to Eq. (69) for m ¼ 1.

This compliance matrix degenerates into the one given in Einav and Puzrin (2003a), when the absolute of

inherent anisotropy parameter jJ0j approaches infinity. As jJ0j becomes smaller the amount of inherent

anisotropy tends to grow. The sign of J0 determines the direction in which the material is anisotropic due to

its previous mode of loading. A positive sign corresponds to inherent horizontal tixotropy, as commonly
observed in post-glacial clays. The apparent elastic bulk and shear moduli are, respectively, given by
K 0ðpÞ ¼ �KKprðp=prÞm; G0ðpÞ ¼ �GGprðp=prÞn ð70Þ

which defines the constants K0 and G0 ðK 0ðp0Þ and G0ðp0Þ, respectively) used in the second part of the Gibbs

potential function (57).

6.3. Translation rules

The translation rule for the yield surfaces depends on the zone to which zone each surface.

Zone I. In this zone, dissipation does not occur and the model behaves purely as hyperelastic material

and no translation is experienced.

Zone II. The isotropic and deviatoric components of the generalized stresses are given by Eqs. (8)1 and

(54); for this zone 0 < g6x, thus
�̂vv�vvp ¼ � og
oâav

¼ p � ð1� gY1Þð1� gÞp0 � HK
0

g
x

� �
K0âav ð71Þ

�̂vv�vvq ¼ � og
oâas

¼ q� ð1� gY1Þð1� gÞq0 � 3HG
0

g
x

� �
G0âas ð72Þ
By applying Ziegler�s orthogonality principle in the form f�̂vv�vvp; �̂vv�vvqg ¼ fv̂vp; v̂vqg 8g 2 f0; 1g the back stress

function can be expressed according to (11)1 and (57), which after differentiation yields the translation rule

for the field of yield surfaces
_̂qq̂qqp ¼
o2g2

oâa2
v

_̂aâaav ¼ _pp � _̂vv̂vvp ¼ HK
0

g
x

� �
K0

_̂aâaav ð73Þ

_̂qq̂qqq ¼
o2g2

oâa2
s

_̂aâaas ¼ _qq� _̂vv̂vvq ¼ 3HG
0

g
x

� �
G0

_̂aâaas ð74Þ
Zone III. For this zone x6 g6 1, thus
�̂vv�vvp ¼ � og
oâav

¼ p � ð1� gY1Þð1� gÞp0 � RK
1H

K
1

g � x
1� x

� �
K0âav ð75Þ



I. Einav, A.M. Puzrin / International Journal of Solids and Structures 41 (2004) 199–226 215
�̂vv�vvq ¼ � og
oâas

¼ q� ð1� gY1Þð1� gÞq0 � 3RG
1H

G
1

g � x
1� x

� �
G0âas ð76Þ
and the translation rule is given by
_̂qq̂qqp ¼
o2g2

oâa2
v

_̂aâaav ¼ _pp � _̂vv̂vvp ¼ RK
1H

K
1

g � x
1� x

� �
K0

_̂aâaav ð77Þ

_̂qq̂qqq ¼
o2g2

oâa2
s

_̂aâaas ¼ _qq� _̂vv̂vvq ¼ 3RG
1H

G
1

g � x
1� x

� �
G0

_̂aâaas ð78Þ
This resembles to the translation rule of the second zone, but using a different distribution function and the

constant parameters RK
1 and RG

1 , which carry memory from the first distribution function.

Zone IV. This zone corresponds to the isotropic hardening/softening hyperplastic component of the
model and to the yield surface yg

�
, thus
�vv�
p ¼ � og

oa�
v

¼ p ð79Þ

�vv�
q ¼ � og

oa�
s

¼ q ð80Þ
This yield surface does not translate since
_qq�
p ¼

o2g
oa�2

v

_aa�
v ¼ _pp � _vv�

p ¼ 0 ð81Þ

_qq�
q ¼

o2g
oa�2

s

_aa�
s ¼ _qq� _vv�

q ¼ 0 ð82Þ
meaning that no change of back stress is allowed.

6.4. Geometric interpretation of the yield surfaces

The form of the large-scale yield function yg
�
in true stress-space space is obtained by substituting the

generalized stresses (Eqs. (79) and (80)) into the generalized yield function (65) (noting the Ziegler or-

thogonality condition)
yg
� ðr; a�Þ ¼ p

�
� py0Pða�Þ

2

	2

þ q
M

� �2

� py0Pða�Þ
2

� 	2

6 0 ð83Þ
which is analogous to the conventional plasticity MCC yield function. However, the largest yield function

of the continuous hyperplastic field in (64) (i.e. when using g ¼ 1) should have the same MCC expression in

true stress space to guarantee continuity. In this case the generalized stresses given by Eqs. (75) and (76)

take the form
v̂vpð1Þ ¼ p � RK
1H

K
1 ð1ÞK0âavð1Þ ¼ p � RK

1 R
K
2 K0âavð1Þ ð84Þ

v̂vqð1Þ ¼ q� 3RG
1H

G
1 ð1ÞG0âasð1Þ ¼ q� 3RG

1 R
G
2G0âasð1Þ ð85Þ
By substituting (84) and (85) into the yield surface (64), for the case g ¼ 1, we obtain the largest yield
function in true stress space
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ŷyðr; a�; 1Þ ¼ p
�

� py0Pða�Þ
2

� RK
1 R

K
2 K0âavð1Þ

	2

þ q� 3RG
1 R

G
2G0âasð1Þ

M

� 	2

� py0Pða�Þ
2

� 	2

6 0 ð86Þ
This yield function agrees with (83) during initial conditions, since that according to Section 3, âað1Þ � 0

always, thus Eq. (86) could always be simplified by
ŷyðr; a�; 1Þ ¼ p
�

� py0Pða�Þ
2

	2

þ q
M

� �2

� py0Pða�Þ
2

� 	2

6 0 ð87Þ
hence we have full similarity with (83), such that continuity between the surfaces exists. We see, then, that

the kinematic nature of the last yield surface in the continuous field is not realized and only isotropic

hardening of the surface occurs in order to guarantee consistency. As the continuous hyperplastic yield

surfaces correspond to a smaller g, the constraining effect is reduced because the influence of k� on the value

of k̂kðgÞ gets smaller. The important result here is that the failure criterion is governed by the outer yield

surface, and not by the field of yield surfaces. This ensures compatibility with the single surface MCC
model.

In Fig. 3(a)–(c) we schematically present the field of yield surfaces in true and generalized stress spaces

for different phases of the loading process. The field of yield surfaces in true stress space is depicted in Fig.

3(a.1) for the initial state such that py ¼ py0 and all internal variables are zero. In this space, the initial stress

point is marked by I ¼ Iðp0; q0Þ. The bold ellipses Y1, Y2, and Y3 represent the elastic nucleus; the bounds

of the SSR, and the large scale MCC yield surfaces respectively. Unlike Y1 and Y3, the mathematical

definition of Y2 does not come from the dissipation, but from splitting the integral in the kinematic

hardening component of the energy potential in (57) into two parts by the use of the parameter x; a
parameter that as already mentioned indicates the relative size of Y2 compared to Y1 and Y3 according to

Eq. (44). In other words, the yield surface that corresponds to Y2 is the one satisfying g equals x.

Fig. 3(a.2) also depicts the field of yield surfaces at initial conditions, but in the generalized stress space.

The yield surfaces in this space always pass through the axis origin and form a continuous picture of the

infinite field of generalized stress-space MCC yield surfaces. Each yield surface is the boundary of the

generalized stress domain for the corresponding generalized stress point, as indicated in the scheme by

the corresponding arrow. Considering Eqs. (71), (72), (75), (76), (79) and (80) we find that the initial points

in that space lie on a vector IvðgÞfv̂v0
p; v̂v

0
qg ¼ ½g þ ð1� gÞgY1�Iðp0; q0Þ, connecting point Ivð0Þ ¼ gY1Iðp0; q0Þ,

related to Y1, and point Ivð1Þ ¼ Iv� ¼ Iðp0; q0Þ, related to Y3. If we ignore the existence of the elastic nucleus,

Y1 shrinks to a point and gY1 ¼ 0; the vector connecting the initial points becomes IvðgÞ ¼ gIðp0; q0Þ, which

is the straight line connecting the axis origin to the true stress point.

Fig. 3(b.1) and (b.2) correspond to the field of yield surfaces after an arbitrary stress path I–F was

followed. This stress path is depicted by a dashed curved line in the true stress space (Fig. 3(b.1)). In this

particular example the stress path initially hits and drags all yield surfaces including Y3. Since yg
�
hardens

isotropically, the pre-consolidation pressure grows and becomes py ¼ py0Pða�Þ. As the stress path conti-

nues, it initially returns back inside Y1, Y2 and Y3 and later hits and drags Y1 and Y2 again, until it settles
in zone III (on a final point which is indicated by F ðpf ; qfÞ. Prior to this loading all the initial generalized

stress points are located on the same straight line (Fig. 3(a.2)); however, after implementing the stress path

I–F , their positions deviate from the straight line (Fig. 3(b.2)). In this space, each yield surface behaves as

an individual conventional MCC surface, without kinematic hardening, but with isotropic hardening/

softening according to the function Pða�Þ of the outer hyperplastic isotropic surface.

Note also that according to continuous hyperplasticity, the yield surfaces can intersect one another (see

Puzrin and Houlsby, 2001c), which is consistent with the thermodynamics. Each generalized stress tensor,

which is denoted in Fig. 3(b.2) by a point, relates to a corresponding yield surface (see Eqs. (64) and (65))
indicated by an arrow. When the point is on the surface, no arrow is shown.
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6.5. Assumption of initial positions of yield surfaces

In the CHCS model it is assumed that, if after a loading process the current stresses are maintained for

sufficient period of time, the stiffness will locally increase after the loading is resumed again. This as-

sumption is simulated in this model by centering the yield surfaces in a linear order on a line connecting the

center of the large-scale yield surface with the required new initial stress state (Fig. 3(c.1)). The final stress

point for the previous loading process becomes the initial point for the new process
F ðpf ; qfÞ ¼ I
_

ðp0; q0Þ
where the superimposed hat on the �I � is added to indicate this is a new initial stress point.

The generalized yield surfaces do not experience any translation during the rearrangement process;

however, we assume that the final points before the process commenced F vðgÞ, shift toward the vector I
_vðgÞ

(Fig. 2(c.2))
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F vðgÞfv̂vfp ; v̂vfqg !
Complete
Ageing

I
_vðgÞ

fv̂v0
p; v̂v

0
qg ¼ ½g þ ð1� gÞgY1� I

_

ðp0; q0Þ
Note that while in stress space the point is fixed and the yield surfaces move, in generalized space the points
move and the yield surfaces are fixed.

Needless to say, the above assumption requires more attention in the future research. The process of

ageing is linked to mechanical evolution at the microstructure scale and to chemical processes. At the

macroscopic level, the memory of these processes is probably reflected in changes in the values of the in-

ternal variables. The assumption that these changes cause the yield surfaces to be rearranged according to

the above law requires further experimental verification.
7. Extension of the model to general stress space

The original framework of the MCC is based, almost exclusively, on laboratory results from conven-

tional triaxial tests. The portions of stress space in which these tests operate are severely restricted, because
the intermediate principal stress must be equal to either the major or minor principal stress. Experimental

evidence reveals that the drained strength parameters vary depending on whether the material is subjected

to triaxial compression or extension. The difference between these two types of test is that in the com-

pression tests the intermediate principal stress, r2, is equal to the minor principal stress, r3, and the major

principal stress, r1, is vertical. By contrast, in extension tests r2 ¼ r1, and the latter stress acts horizontally.

Obviously, these show only two extreme cases. At this stage position, the CHCS model suggests that the

residual strength is the same for any loading direction (as in the extended von Mises material), since the

projections of the yield surfaces are circular in the octahedral plane. To account for the more realistic
strength dependency on the rotation of principal stress directions, the shape of the projection of the yield

surfaces should be a function of the third stress invariant. An alternative is to use the family of plane yield

surfaces proposed by van Eekelen (1980). The shape of the surfaces is governed by the parameters n, w and

1, and in the context of our work, this family is implemented by modifying the parameter M in the yield

surface expressions (64) and (65)
Mðv̂vÞ ¼ n � ð1þ wSinð3ĥhvÞÞ�1 ð88Þ� �

where the Lode angle in the generalized stress space ĥhv ¼ ĥhvðv̂vÞ ¼ 1

3
arcsin � 3

ffiffi
2

p

2

ĴJv
3

ðĴJv
2
Þ3=2

; ĴJ v
2 ¼ ðvqÞ

2
=3 ¼

v̂v0 : v̂v0=2; v̂v0 ¼ v̂v � vp1; ĴJ
v
3 ¼ 1

3
ðv̂v0 � v̂v0Þ : v̂v0; while for yg

�
we use Mðv�Þ with the necessary changes.

From Eq. (88), it can be seen that the number of parameters increases by two; however, if the parameter

1 is taken to be zero, then the Mises failure criterion is invoked again with n ¼ M and the number of

parameters does not change. If /0 is taken as the value of the friction angle, determined from the triaxial

test in compression, then the Matsuoka–Nakai failure criterion (Matsuoka and Nakai, 1974) can be ap-

proximated by substituting 1 ¼ 0:25, n ¼ Sin/0, and w ¼ 2nð3� n2Þ=3
ffiffiffi
3

p
, where again the number of

parameters remains the same, while /0 replaces M . The transformation between these two parameters may
be easily computed from geometrical consideration, and is given by
M ¼ 6Sin/0

3� Sin/0

ð89Þ
It is also possible to approximate the well-known Lade criterion (Lade and Duncan, 1975) as well as other

criteria, but in the following we adopt the Matsuoka–Nakai criterion.
Since we modified the yield surfaces in (64) and (65), it is important to verify whether the dissipation is

still always non-negative. However, according to the convex analysis performed by van Eekelen (1980),
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Fig. 4. CHCS field of yield surfaces projection on the octahedral plane.
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each of the surfaces in the field is convex in the octahedral plane. Since in the q–p plane the elliptical MCC

surfaces are also convex, we conclude that the entire surface shape is convex. Fig. 3(b.2) shows that the

generalized yield surfaces always pass through the origin and from Fig. 4(a) we see that they contain the

origin in octahedral generalized stress space; hence
v : oy=ovP 0 ð90Þ
for each surface in the field. Multiplying Eq. (90) by the related non-negative multiplier kP 0, and noting
_aa ¼ koy=ov, we observe that v : _aaP 0 is always obeyed, which guarantees non-negative dissipation, as in

Eq. (6).

The derivatives of the Gibbs potential do not change since only the yield surfaces were modified. The

flow rules, though modified, remain associated. The principal shape of the ellipses in Fig. 3 is varied, so that
in the three-dimensional view, the entire shape is ellipsoidal with Matsuoka–Nakai cross-sections per-

pendicular to the hydrostatic axis. For example, the field of cross-sections of the field of yield surfaces is

described in Fig. 4 for initial conditions.
8. Parametric study

The CHCS model requires fourteen independent parameters, described below. Though an extensive

parametric study is not feasible here due to the lack of space, effects of some of the less conventional

parameters on the model behavior in standard triaxial consolidation, swelling and shear conditions are

briefly addressed in this section.

8.1. Parameters of the model

Elastic parameters:
�GG the dimensionless shear modulus constant in empirical relation (70)
�KK the dimensionless bulk modulus constant in empirical relation (70); note that the parameter j� is

not an extra parameter, since it is indirectly defined by �KK
n a constant in relation (70)

m a constant in relation (70)
J0 the inherent elastic coupling modulus constant in (69)
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Small-strain parameters:

gY1 the size ratio between Y1 and Y2

xL the normalized limiting strain at the SSR boundary (Y2)

RK
1 the bulk stiffness reduction within the SSR

RG
1 the shear stiffness reduction within the SSR

Large-strain parameters:

gY2 the size ratio between Y2 and Y3

xGL the normalized limiting shear strain between Y2 and Y3

xKL the normalized limiting volumetric strain between Y2 and Y3

k� inclination of the virgin compression line

/0 the value of the friction angle determined from the triaxial test in compression

An initial state parameter, py0, which represents the preconsolidation pressure that defines the initial size

of Y3, has to be provided as well.

Provided all the above parameters are defined, the rest of the constants utilized by the proposed model

can be easily derived from the corresponding relationships. The model parameters presented herein could

all be derived from a single consolidated undrained triaxial compression test instrumented for local de-

formation measurements. Initially, the soil sample undergoes isotropic compression to point A which lies

on the virgin compression line, followed by isotropic swelling to point B (at approximately half the effective

pressure, so that pB � 0:5pA). The sample is then left at this stress state for a period of time, sufficient for the
field of yield surfaces to center around B according to assumption in Section 6.5. After that, the sample

undergoes shearing in undrained triaxial compression until failure is reached.

8.2. Study program

The initial values of the model parameters for the current study are listed in Table 1. Each of these
parameters may get a different value in different evaluations; in this case its new value will be specified

separately. The limited parametric study presented in this section follows the different loading paths in

triaxial test, as described in Fig. 5; this figure also marks the preconsolidation state parameter, py0, which

gets the value of 200 [kPa]; the initial mean effective stress p00 ¼ 100 [kPa] and the initial shear stress q0 ¼ 0

[kPa].

8.3. Elastic parameters

The parametric study is limited here to the effects of the form of pressure dependency of the elastic shear

and moduli in Eq. (70). The values of the parameters m and n are taken equal by setting m ¼ n ¼ 0, 0.5, 1;

then the corresponding �GG and �KK values are adjusted to always give the same values of G0 ¼ 15000 [kPa] and

K0 ¼ 45000 [kPa].

As follows from the compliance matrix in (69), the deviatoric stress–strain curve for loading path IA

(Fig. 6(a)) is exactly the same for different sets of parameters. The strain-path, however, is different (Fig.
Table 1

Initial values of the parameters for the study

Parameter �GG �KK n m J0 gY1 gY2

Value 1500 4500 0.5 0.5 0 0 0.5

Parameter xL RG
1 RK

1 xGL xKL k� /0

Value 2.5 0.2 0.2 2.0 4.0 0.1 35�
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6(b)). If m ¼ n ¼ 0 than the cross-coupling terms in (69) vanish that is why no volumetric strain is accu-
mulated. When the value of the power dependency is higher, more swelling is experienced. On the other

hand, when the same material is subjected to isotropic consolidation (loading path IB), some difference in

the stress–strain curves is apparent (Fig. 7), since the bulk stiffness has different pressure dependency. At the

end of this consolidation phase both the bulk and shear moduli are not longer equal to their initial values,

so that when the material is sheared immediately after the consolidation (loading path BC), the deviatoric

stress–strain curves are not identical (Fig. 8). This difference is clearly seen for the small strain secant shear
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Fig. 7. Volumetric stress–strain curve of isotropic consolidation IB for different m and n parameters, using the same G0 and K0.
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moduli (in triaxial defined by Gsec ¼ q=3es), which then approach the same asymptotic value as the loading
progresses towards failure (Fig. 9).
8.4. Small-strain parameters

Next, the effect of the parameter that defines the reduction of stiffness within the small strain region was

studied, by making the shear parameter RG
1 vary: RG

1 ¼ 0:1, 0.15, 0.2 and 0.25. Fig. 10a and b show how the

shear stress–strain curve changes as a result of this variation. It can be seen that this parameter do not alter

the strain at the end of the small strain region (Y2) because all the curves meet at this point. However, this

parameter affects the strain value at failure since the tangent stiffness at Y2 is different. The strain path

variations are shown in Fig. 10c and the secant shear modulus degradation during loading is given in Fig.

10(d). The last figure shows that even while the elastic nucleus is neglected (since gY1 ¼ 0), there is
some ‘‘quasi-elastic’’ domain which is controlled by the R1 parameters. This is a known property of the

Ramberg–Osgood stress–strain relationship, which is characterized by slow reduction in stiffness and small

amount of damping.

Another important parameter is the normalized limiting strain at Y2, xL. Fig. 11 correspond to Fig. 10,

though this time––for xL. Fig. 11 highlights how the parameter xL changes the strain within Y2, but unlike

R1 almost does not influence the strain at failure since the tangential stiffness at Y2 is the same. As with the

R1 parameter, xL also controls the size of the ‘‘quasi-elastic’’ domain (Fig. 11(d)). It might be suggested, that

a proper choice of the small strain parameters may allow for the Y1 region to be neglected (i.e. gY1 ¼ 0),
while R1 and xL will control the ‘‘quasi-elastic’’ domain size.
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8.5. Large-strain parameters

Finally, we examine the effects of the normalized limiting strain xGL between Y2 and Y3. For brevity, we

demonstrate only the variations in shear stress–strain curve for xGL ¼ 2, 4, 6, 8, and 10. As can be seen in

Fig. 12, an increase in this parameter increases the strain to failure.

8.6. Discussion on the choice of parameters

The fourteen independent parameters for the CHCS model were selected to correspond to previous

observations and trends in constitutive modeling for clays. The emphasis here is on establishing a con-

ceptual competitive model rather than on suggesting a practical engineering model. In real design and

practice, however, the use of such high number of parameters may be unfavorable. It is possible to reduce

the number of parameters by assuming some empirical relations based on laboratory tests. Moreover, at
this stage, if a smaller number of parameters is desired, then we suggest considering to eliminate the elastic

nucleus (i.e. using gY1 ¼ 0); using the same power dependency m ¼ n for the bulk and shear moduli (thus

enforcing a constant Poisson�s ratios); their values may also be assumed from the literature.
9. Conclusions

This paper presents a thermodynamically admissible model (CHCS) which is based on a unified
hyperplastic formulation. This formulation makes use of the continuous hyperplastic component to capture
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Fig. 11. Study on the xL parameter for drained test IA: (a) stress–strain curve; (b) magnified stress–strain curve; (c) strain path curve

and (d) degradation curve of the secant shear modulus.
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the smooth non-linear kinematic hardening behavior prior to the large scale yielding, while the hyperplastic
component is used to describe the monotonic isotropic hardening behavior beyond this instantaneous

yielding. Although in this work we apply the unified formulation to soils, it could probably find application

in modeling of other solid materials, where the abrupt phenomena are combined with general continuous

behavior.

The paper also establishes a technique for modeling different kinematic hardening stiffness regions within

the above formulation. Using this technique the CHCS model was developed by identifying three kinematic
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regions: the hyperelastic region; the small strain region (SSR) where the stiffness reduction is rapid; and the

intermediate region. In addition, an isotropic hardening region controls the large scale yielding using a

single hyperplastic isotropic-hardening yield surface. The compliance matrix developed by Einav and

Puzrin (2003a) governs the hyperelastic region. The stress–strain curve within the SSR is governed by the
conventional Ramberg–Osgood function while within the intermediate region it is dominated by a modified

hyperbolic function.

The field of yield surfaces is prescribed by the modified Cam Clay elliptical yield surface, with a

Matsuoka–Nakai projection on an octahedral plane, which allows us to account for the dependency of

yielding on the third stress invariant.

A limited parametric study is presented, with more elaborate evaluation of the model performance

against the lab tests and field measurements given in the companion paper.
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